

Water Resources Division

Water Report and Water 2120 Update

Mark Kelly, PE Water Resources Manager

SUPPLY METRICS SNAPSHOT &

August 2025 (July Supply Data)

Water Authority Drought Stage: Drought Advisory

Groundwater Production

Surface Water Production

Drought Stages

Groundwater Production / GPCD	DSCI≥300	Less than 120% of the Annual GW Production Goal	Between 120% and 130% of GW Production Goal	Between 130% and 140% of GW Production Goal	More than 140% of the GW Production Goal
0 to < 2 GPCD over the goal	Stage 0	Stage 0	Stage 0	Stage 0	Stage 1
2-4 GPCD over the goal	Stage 0	Stage 0	Stage 1	Stage 1	Stage 2
4-6 GPCD over the goal	Stage 0	Stage 0	Stage 1	Stage 2	Stage 3
> 6 GPCD over the goal	Stage 0	Stage 1	Stage 2	Stage 3	Stage 3

Water 2120: 10 Year Update

Where We Have Been

Water 2120: Planning for Change

Climate Change and Supply Availability

- Water 2120 integrates climate change risk analysis
- Predicted spring runoff peaks happening earlier in the year
- Climate change analysis anticipates drought and shortage in surface water supply

Key Outcomes of Water 2120

Water 2120 Policies

Establish and Maintain a Groundwater Reserve

Update and Maintain the Water Conservation Strategy

Protect and Enhance Storage of Native and San Juan-Chama Water

Protect Valued Environmental and Cultural Resources

Abiquiu Reservoir Current and Proposed Maximum St. Bevations

Groundwater Management Levels

Relative to pre-development (the elevation of groundwater before affected by pumping):

- 1. Working reserve 50-250 ft drawdown
- 2. Safety reserve 250-300 ft drawdown
- 3. 110 ft is target for average well drawdown
- Below 300 feet = potential for aquifer compaction
- "Fuel gauge" is water level relative to 250ft

Task 1: 2026 Decade Update

- What has happened since Water 2120 was passed in 2026?
- Progress over the last 10 years

Implementation Plans

- Water Conservation Plan (2018)
- Rivers and Aquifers Protection Plan (2018)
- Environmental Plan (2021)
- Reuse Plan (2021)
- Groundwater Management Plan (2021)
- Drought Management Plan (2023)

Supply- Surface Water

Supply-Surface Water

Supply- Groundwater

Supply- Groundwater

Demand

Next Steps

- Task 1: 2026 Decade Update
- ☐ Task 2: Update Demand
- ☐ Task 3: Update Supply
- ☐ Task 4: Evaluate Gaps between Projected Supply
 - and Demand
- ☐ Task 5: Revise Portfolios
- ☐ Task 6: Update Policies as Needed
- ☐ Task 7: Meetings and Annual Reporting
- ☐ Task 8: Final Reporting

Presentation to ABCWUA Board August 20, 2025

Water 2120 in the context of long range planning in the United States

Water Utility Climate Alliance (WUCA)

Water Utility Climate Alliance (WUCA) WUCA Key Messages

Warming is here and now. Climate adaptation planning is not just about the future. Water utilities are experiencing the effects of a changing climate on their water resources today.

Know your system and explore its vulnerabilities. Assess your water system to identify vulnerabilities. Risks can only be reduced if they are identified.

Plan for multiple futures. Predicting the future is not feasible but anticipating plausible warmer future climates is. Prepare to face a variety of scenarios.

Capacity building and assessment are part of the adaptation equation. Developing the technical and managerial expertise to identify and assess climate risks to a system is as much a part of adaptation as the steps taken to implement risk reduction measures.

Overview: How and why scenario planning is useful

Overview: How and why scenario planning is useful

Scenario Planning: the Cone of Uncertainty

Peer Examples – Denver Water

Build Scenarios

Peer Examples - Portland Water Bureau

Low Supply Stress

Economic Woes

Lowest funding availability Least supply stress

- Demands 25% lower than current projections
- < 5% of summers need augmentation</p>
- Maximum summer augmentation needed: 10 mgd
- CSSWF: » 70 mgd for < 30 days
 - » 60 mgd for 30-90 days
 - * 50 mgd for > 90 days
- Municipal bonding rate > 6%

Less Funding Availability

• Reduce supply program budgets by 25%

Rosy Outlook

High funding availability Less supply stress

- Demands similar to current projections
- · 20% of summers need augmentation
- Maximum summer augmentation needed: 55 mgd
- CSSWF: » 75 mgd for < 30 days
 - » 65 mgd for 30-90 days
 - » 55 mgd for > 90 days
- Municipal bonding rate between 3–6%
- No change in program budgets

Low Flows

Highest funding availability Most supply stress

- Demands 15% higher than current projections
- < 50% of summers need augmentation</p>
- Maximum summer augmentation needed: 80 mgd
- CSSWF: » 60 mgd for < 30 days
 - » 45 mgd for 30-90 days
 - » 40 mgd for > 90 days
- Municipal bonding rate < 3%
- Increase supply program budgets by 15%

Thorny Prospects

Low funding availability More supply stress

- Demands 15% lower than current projections
- < 10% of summers need augmentation</p>
- · Maximum summer augmentation needed: 50 mgd
- CSSWF: » 65 mgd for < 30 days
 - » 55 mgd for 30–90 days
 - » 45 mgd for > 90 days
- Municipal bonding rate between 3–6%
- Reduce supply program budgets by 15%

High Supply Stress

More Funding Availability

Questions?