Potential Impacts of Oil & Gas Development on Ground Water Resources: Middle Rio Grande Basin Hydrogeology & Vulnerability to Impacts from Fracking Bruce Thomson Civil Engineering & Water Resources

(bthomson@unm.edu)

Introduction

- NM has large reserves of fossil fuel resources including oil, gas, and goal
- Oil & gas development is important to the NM economy
- Much misunderstanding about the role of water in development
- Public concern about impacts of oil & gas development on water resources
 - Water resources required for exploration & development
 - Water produced during development (produced water)
 - Impacts on ground water, seismic events, others

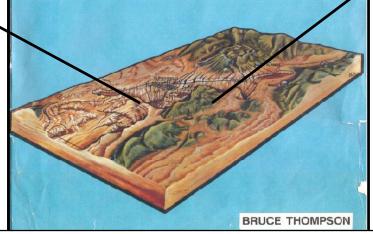
Previous Presentation

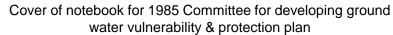
- Focused on drilling technologies & water use
 - Water use for drilling
 - Water use for fracking
 - · Chemical constituents in frack fluids
 - Water produced during oil recovery
 - Frack flowback
 - Produced water

- Fracking coupled with horizontal drilling has revolutionized oil & gas production in U.S.
 - Has enabled development of formations that previously were inaccessible (shales, tight sands, coal)
 - Has increased productivity of existing formations
 - Increased productivity with fewer wells
- But fracking become a lightning rod that has produced very emotional opposition from some members of the public
- Oil & gas industry has extensive experience with process
 - · Originally with vertical wells
 - More recently with horizontal wells
- Fracking technology is well understood and potential failure mechanisms leading to loss of integrity

Previous Conclusions - 2

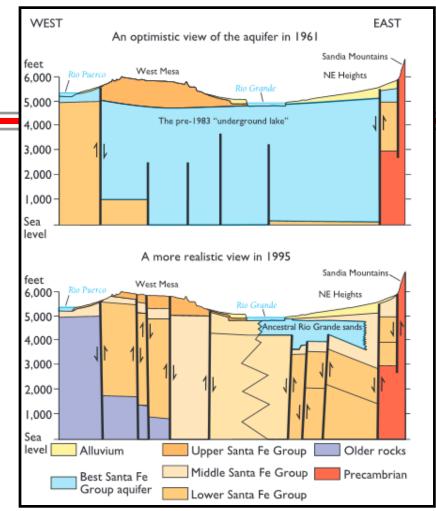
- Principal threats to water resources from fracking are those associated with conventional oil & gas development
 - Spills, leaks, accidents associated with surface operations
 - Transportation and disposal of produced water
- Little evidence that fracking has contaminated ground water resources, nevertheless, management & regulatory programs are needed to assure protection of resources.

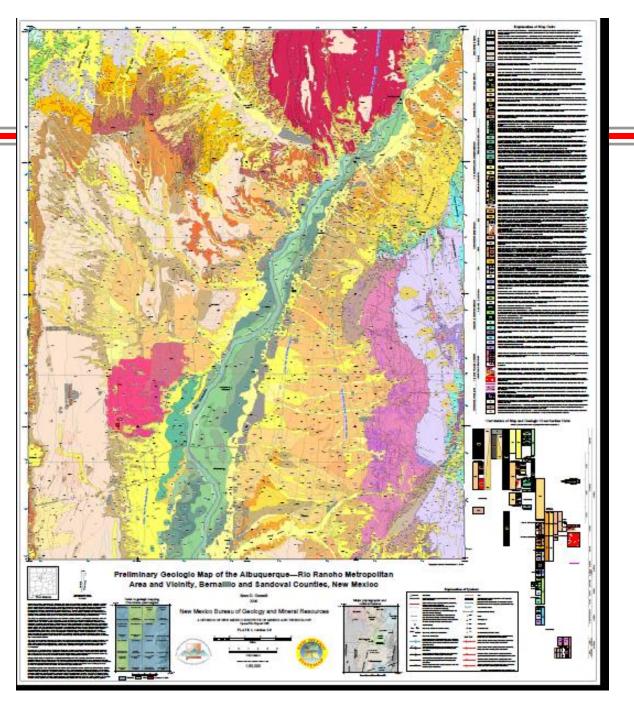

- Questions were raised regarding proposed exploration & production well in western Sandoval County by SandRidge Exploration & Development, LLC and the threat this development might pose to ground water resources in the Middle Rio Grande
- Objectives of this presentation
 - Summarize hydrogeology of MRG basin in context of potential contamination from oil & gas exploration & development
 - Summarize of SandRidge Project
 - A bit about ground water contaminant transport
- Present concluding thoughts on vulnerability of ground water resource to contamination



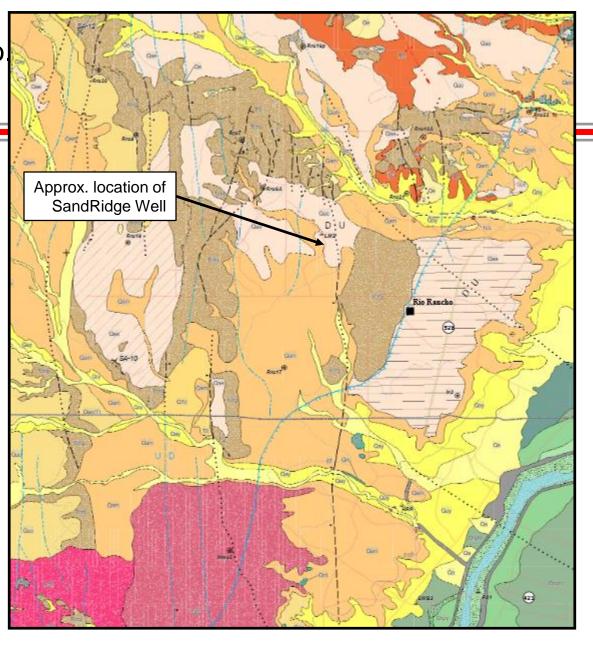
Hydrologic View of Albuquerque Ground Water Basin < 1985

- Ground water resources equivalent to Lake Superior
- Unconsolidated sediments to >10,000 ft deep
- High quality water throughout entire basin



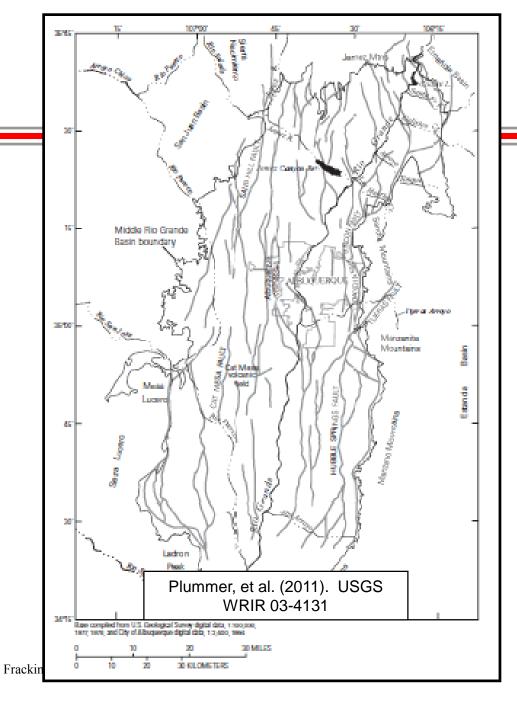

Actually Basin is Much More Complicated

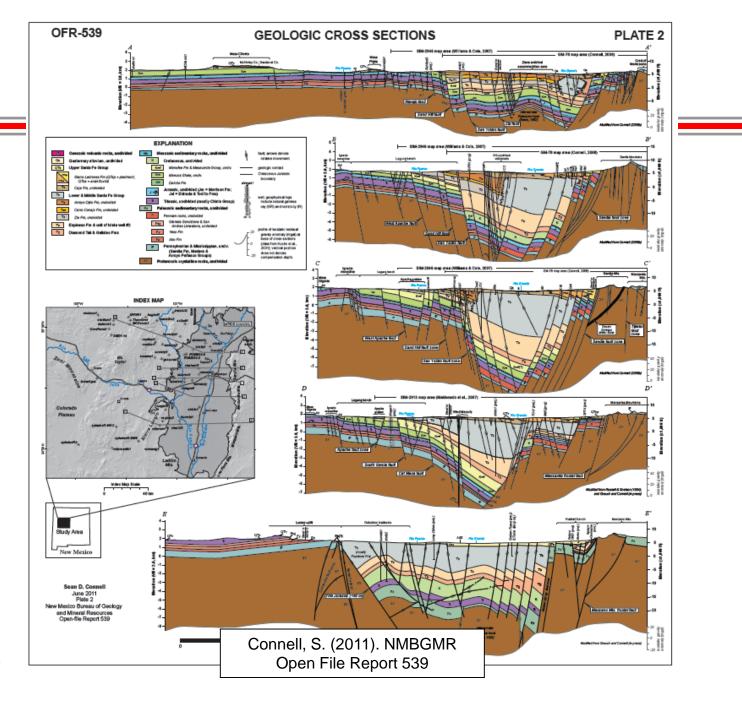
- Notable contributors to knowledge
 - Kelly Summers, 1st hydrogeologist employed by CABQ
 - John Hawley, NMBGMR, contracted to prepare detailed conceptual model of basin (Hawley & Haase, 1992)
 - Mike Kernodle et al., USGS, developed 3-D ground water model that is basis of that used today (Kernodle et al., 1994)
- New knowledge:
 - Aquifer heads were falling rapidly
 - Aquifer was subject to severe over draft (~50 KAF/yr)
 - Much less recharge from river & mountain front than originally thought
 - Glover-Ballmer equation not valid
- Horizontal stratification: K_H ~ 500 K_V THE UNIVERSITY of NEW MEXICO


Johnson, P., (2009), NMBGMR, Decision Makers Conference

Pretty Maps! (Connell, 2008)

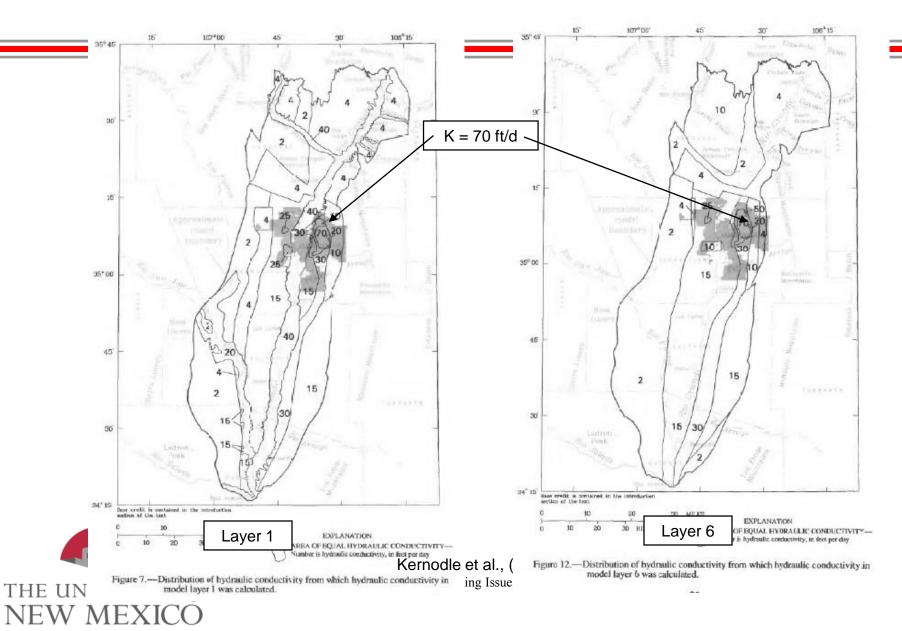
Geology of Sandoval Co. (Connell, 2008)

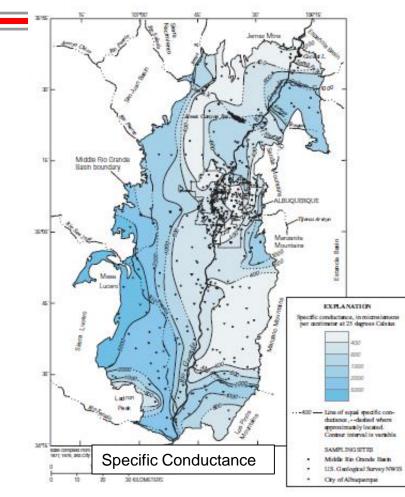


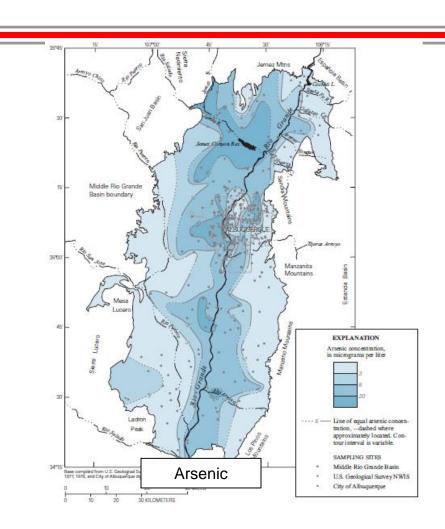

Fracking Issues

Lots of Faults

- Faults have major influence on direction of ground water flow
- Major influence on ground water quality




Hydraulic Properties Vary Widely


(Kernodle et al., 1994)

Ground Water Quality in MRG Basin

(Plummer et al., 2004)

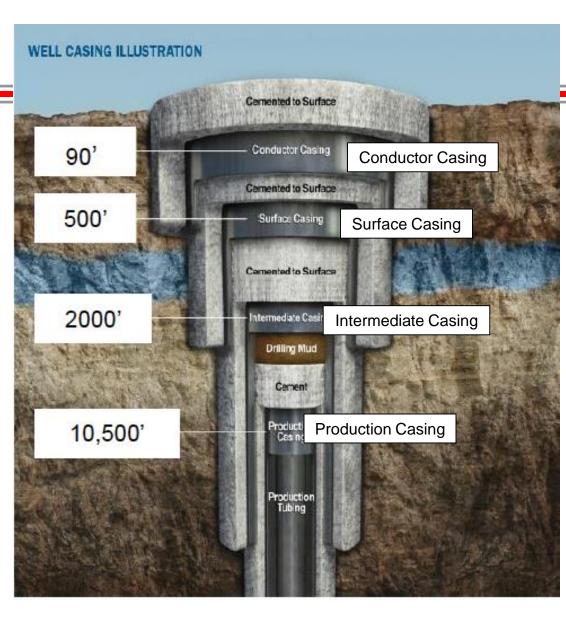
Summary of Hydrogeology Related to Regional Water Supply in Western Sandoval County

- Hydrogeology is very heterogeneous, both vertically & horizontally
 - Low hydraulic conductivity
 - Numerous north/south faults limit east/west flow
 - Horizontal stratification limit vertical flow
 - Hydraulic gradients are flat in western Sandoval County due to little ground water development
 - Proximity to faults limits potential value of ground water resource
- Poor water quality due to As, Mo, V, TDS & other parameters

Proposed

Proposed SandRidge Project

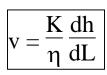
(From application materials submitted to Sandoval Co.)

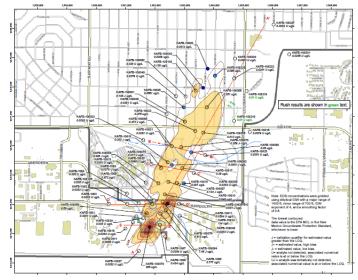

- Site is 5.7 mi west of Rio Rancho city limits
- Exploration & possible development
- Full capacity:
 - < 500 bbls/d oil</p>
 - < 2 M ft³/d gas
 - < 1000 bbls/d produced water
- Oil, gas & water to be transported by truck
- Fracking may be used during development
- Water for drilling is 10,000 bbls (400,000 gal)
 - Purchase water from Rio Rancho

Well Construction

- Conservative design to limit risk of contamination
- Maximum depth ~10,500 ft

Depths 17-1/2 18-3/6*, 54.59, 3-55 Wellhead Equipment 500 11"SM 3 7-1/55"SM Tubing Head? 8-5415 **Primary Targets** ٠ 2000/ \$-5/6", 398, J-55 Tubular Detai Wi Grade 10.10 Gallup F – 8468 ft • • Gallup E – 8268 ft Logging Program Detail 78 10 2,007 840.82 thund Comb 810.00 YSP Lo 15 2,097 Lower Mancos – 7805 ft • Gallup C – 7584 ft Well Configuration Vertical Target Pay walter 70C @ \$\$\$\$* Secondary Targets Point Lookout Entrada – 10188 ft • Point Lookout Mances • Morrison – 9100 ft Gallup C 2.554 Galapo Dakota – 8770 ft • Lower Mancos Lower big Greenhorn – 8712 ft Gallup E GalapE • Gallup F Galap? Greenhorn 8,712' decembra: Base of treatable water – 2000 ft Morrison Entrada 10,188* Entrada




\$4/2" 20# P-110 LTC

10,500

Contaminant Transport

- Ground water moves very slowly. Velocity depends on gradient, hydraulic conductivity, & porosity. Use values from Kernodle et al. (1994)
 - K = 2 ft/d, gradient ~2 ft/mile, η (porosity) ~0.2
 - GW velocity = 1.4 ft/yr
- Compare to KAFB fuel plume
 - K = 70 ft, gradient ~ft/mile, η ~0.2
 - GV velocity = 190 ft/yr
 - Note: Plume ~6,000 ft long, time > 30 yrs v \leq 200 ft/yr

Nature of Possible Contaminants

- Hydrocarbons:
 - Strongly adsorbed to soil
 - Biodegradable
 - Little likelihood of persistence or rapid migration
- Fracking chemicals
 - Not considered toxic
- Produced water
 - To be disposed at facility near Lindrith (~100 miles)

Neighboring Wells?

Permit No.	Diversion	Well Depth (ft)	Water Depth (ft)	Distance (ft)
	(AF/yr)			
RG 06745 POD14	24000	1922	1090	3353
RG 26259X2	1875	1505	1128	3690
RG 26259 X4		1475	1093	1340
RG 26956 POD1	0			3120
RG 37634 POD1*	3	112	13	3219
RG 06745 POD14	0	1922	1090	3353
RG 66531*	3			953
RG 70045*	3	3517	288	160

* Private Domestic Well

Concluding Thoughts

- In considering threat that oil & gas exploration & development presents to water resource need to consider
 - Nature of exploration & development
 - Type of drilling (horizontal vs vertical)
 - Details of well construction & QA/QC procedures
 - Transportation issues: oil, gas, water
 - Waste storage & disposal method
 - Ground water resource
 - Hydrogeology, especially hydraulic properties
 - Quality of ground water
 - · Proximity to receptor wells
 - Nature of potential accidents & contaminants
 - Spills, leaks
 - Environmental & toxicological behavior of contaminants

References

- Connell, S.D. (2008). Geologic map of the Albuquerque-Rio Rancho metropolitan area and vicinity, Bernalillo and Sandoval Counties, New Mexico, Geologic Map 78, NMBGMR, NM Tech, Socorro, NM
- Connell, S. (2011). Preliminary study of the geologic framework of the Colorado Plateau-Middle Rio Grande Basin transition, New Mexico., Connell, NMBGMR Open File Report 539, NM Tech, Socorro, NM 58 p.
- Hawley, J. Haase, S. (1992). Hydrogeologic Framework of the Northern Albuquerque Basin, Open File Report 387
- Johnson, P., (2009), Water Natural Resources, and the Urban Landscape Decision-Makers Field Guide 2009 Decision Makers Conference,
- Kernodle, J.M., McAda, D.P., Thorn, C.R. (1994). Simulation of Ground-Water Flow in the Albuquerque Basin, Central New Mexico, 1901-194, with Projections to 2020, USGS Water-Resources Investigations Report 94-4251, Albuquerque, NM
- Plummer, L.N., Bexfield, L.M. Anderholm, S.K., Sanford, W.E., Busenberg, E. (2004). Geochemical Characterization of Ground-water Flow in the Santa Fe Group Aquifer System, Middle Rio Grande Basin, New Mexico, USGS Water-Resources Investigations Report 03-4131, Albuquerque, NM

